

Title:​ ​Fennex

Author:​ ​Maddisen Topaz

Dates:​ ​21st March 2017 - 11th April 2017

Purpose:

Fennex is a simple 2D platformer game.

Files:

Animation
● Animation.cs
● AnimationHandler.cs
● TextureReel.cs

Collisions
● BoundingBox.cs

Level Assets
● BackgroundImage.cs
● Crystal.cs

● Platform.cs
● MovingPlatform.cs
● Spikes.cs

Levels
● Level.cs
● DarkForest.cs

Managers
● InputHandler.cs

Particles
● Particle.cs
● ParticleEngine.cs
● SurfaceParticleEngine.cs

Game
● Camera.cs
● Game1.cs
● Player.cs
● Texture.cs

Requirements/Specifications:

Game Description

Fennex is a simple 2D platformer game. You play as Fennex, the fennec fox;
your mission is to collect all of the crystals in the level, while avoiding obstacles
such as spikes that will cause Fennex to die. Fennex is a light-hearted
adventure platformer, aimed at a target audience of ages five and above.

Requirements

● Currently Fennex is not cross platform and can only be played on a 32-bit
or 64-bit windows machine.

● The machine must have a DirectX 9.0 (or above) capable GPU.

Monogame Components Used

● Game
● GameTime
● GraphicsDevice
● ContentManager
● GraphicsDeviceManager
● SpriteBatch
● SpriteEffects
● Texture2D
● SpriteFont

● Song
● MediaPlayer
● Rectangle
● Vector2
● KeyboardState
● MouseState
● GamePadState
● Keyboard
● GamePad
● Keys
● ButtonState
● Color

User Guide:

Playing Fennex

Fennex can be played on any 32-bit or 64-bit windows machine. The
executable (Fennex.exe) file must be run from the folder with the necessary
.dll files and the content folder to play the game.

To play Fennex, simply open the Fennex directory folder and double click on
Fennex.exe. To start the level press spacebar.

You can move Fennex around in the level by pressing A for left and D for right.
To make Fennex jump press space bar.

Controls

● A- Left
● D- Right
● Spacebar- Jump

Goals

● Avoid the spikes they will cause Fennex to return to the last checkpoint
● Collect all of the crystals and reach the end of the level

Building and Running Fennex

Fennex was written using the Monogame API Version 3.6 and Visual Studio
Community 2015. To build and run Fennex you will need to download and
install Visual Studio 2015 and then install Monogame 3.6 or higher, for Visual
Studio.

You will then be able to build and run Fennex in 32-bit Debug or Release mode

from Visual Studio.

To install Visual Studio Community 2015 see:

● https://msdn.microsoft.com/en-us/library/e2h7fzkw.aspx

To install Monogame for Visual Studio Community 2015 see:

● http://www.xnahub.com/how-to-install-monogame-on-visual-studio-20
15/

Structure/Design:

Animation

To play an animation I created an AnimationHandler class which controls the
playback of an animation. Each animation must have its own
AnimationHandler. When creating a new animation handler you pass in the
animation that the handler is in charge of.

The handler is in charge of playing the animation which includes calculating
what frame in the animation we are up to based on the current game time.
The animation handler can also return the total time the animation should play
for, over one cycle.

The Animation class contains all of the information about the animation itself,
such as the amount of time to display each frame in the animation, whether
the animation is looping and the texture data (frames) of the animation.

I adapted the design of the animation classes from a simple monogame
platformer I found online.

See the following link:

https://github.com/MonoGame/MonoGame.Samples

The original classes (Animation.cs and AnimationHandler.cs) were adapted
from the Platformer2D project. They were designed to cycle through a sprite
with a single texture that contained all of the frames of the animation. The
width of a frame was assumed to be same as the height of the texture.

For example:

http://www.xnahub.com/how-to-install-monogame-on-visual-studio-2015/
https://github.com/MonoGame/MonoGame.Samples
https://msdn.microsoft.com/en-us/library/e2h7fzkw.aspx
http://www.xnahub.com/how-to-install-monogame-on-visual-studio-2015/

I needed to be able to support sprites with multiple textures, as my sprites
such as the run animation, had frames that were separate image files. I also
had frames where the texture was not square.

Thus I modified the Animation.cs class to store a TextureReel object, which
consists of a list of textures, where each texture is a frame in the animation. I
can then add the required frames for the animation to the texture reel one by
one. I also have the option to pass a spritesheet into the animation, where a
texture reel will be constructed (the texture is split into frames).

Collisions

The player collisions makes use of two classes; BoundingBox.cs and Texture.cs.

The Texture class is wrapper to the XNA Texture2D component. Creating a
Texture object allows me to use all of the Texture2D functionality, with an
additional function GetPixel(). This allows me to access the pixel data of a
Texture object.

To check for collisions between the player and the objects in the world I do the
following:

1st Check - Bounding Box Collision

● Iterate through each collidable object in the world and generate its
bounding box

● Generate a bounding box for the player and check if the two bounding
boxes are colliding

2nd Check -Pixel Collision

● If a bounding box collision has occurred then check if a pixel collisions
has occurred

● First generate two bounding boxes; one for the player and one for the
platform

● Next get the bounding box formed by the intersecting region of the two
boxes

● Iterate through the pixels within the intersecting region from the players
texture

● If the pixels alpha is greater than 0 then transform the pixels coordinates
into the image space of the second texture, where the second texture is

the texture of the object the player is colliding with
● If that pixels alpha is greater than 0 then a collision has occurred

Once a collision is determined to have occurred the next step involves fixing
the position of the player so that a collision is no longer occurring.

I used a simple island search to find a place to move the player back to in order
to stop the player colliding.

The island search is designed to search for a new position to place the player
in such that it is no longer colliding with the objects in the world.

The island search iterates in a star shaped pattern, by first trying to move the
player up, then down, then left, then right, then diagonally in each direction;
by one pixel, then two and so on, until a suitable position is found where the
player is no longer colliding with the objects in the world.

This method was an optimisation on the diamond shape island search, which
was substantially slower.

Player

The player class is essentially a simple state machine. The current state of the
player determines which animation should be playing and what actions are
allowed while the player is in that state.

To get the new state of the player I use a 2D array which takes two
parameters, the current state of the player and the input action. This array
takes the two values and gives back a third value, the new state the player
should be in.

The current state of the player is used as the index to an array of animation
handlers which determines which animation to draw the player in.

Input

The InputHandler.cs class is used to handle input in the game.

I designed the input handler to keep track of the keyboard state, mouse state
and also gamepad state. This allows me to query the input handler to check if
any key is down or pressed, any button on the gamepad is down or pressed, or
if the left or right mouse button is down or pressed.

Particles

I adapted my Particle.cs and ParticleEngine.cs classes from the following
tutorial:

http://rbwhitaker.wikidot.com/2d-particle-engine-1

I followed this tutorial fairly closely as it already did exactly what I needed it to
do.

However I did make changes to the design of the update function. In the
original tutorial particles are added every update, which causes the particle
generator to generate many particles each frame. I wanted to be able to
control the flow of particles from the particle generator as some things may
emit more or less particles per second.

To implement this feature I added a new parameter particles per second,
which checks how many particles the update function needs to create based
on how much time has elapsed and how many particles have already been
created.

I also wanted the particles to fade out over time, rather than simply be
removed as they were in the original tutorial. To do this, I changed the
particles draw function, so that the color is multiplied by an alpha scale, which
is calculated based on how much time to live the particles has left.

Furthermore, I also expanded on ParticleEngine.cs by adding
SurfaceParticleEngine.cs, which is a particle emitter that spans over an entire
surface. The SurfaceParticleEngine also only adds an upward velocity to the
particles, which makes the surface appear to emit particles from only one side
of the surface.

It was my plan to implement particles stages as well, where each particle
would cycle through a list of its own textures that were based on the life of the

http://rbwhitaker.wikidot.com/2d-particle-engine-1

particle. This would have added even more realism to the particles and allowed
me to do more complex particle emitters such as fire. However I wasn’t able to
implement this change in the time frame.

Camera

The Camera class contains the position of the top left corner and the margin
between each edge of the camera’s bounding box and the screen size.

To move the camera with the player I check if the player is standing within the
margin of the camera, I then move the camera so that the player is inside the
camera’s viewport again. This is done by drawing all images in the world at
their position minus the position of the camera.

Levels

The Level.cs class is the parent class used to inherit from when creating a new
level.

Each level has a Initialise(), Update() and Draw() method. Initialise() sets up the
level, Update() is used to update the various objects in the level that require
updating and Draw() draws everything to the screen.

Fennex currently only has one level DarkForest.cs. Unfortunately I didn’t have
time to make a level editor which would have simplified the process of placing
objects in the level. However I did implement a level editing mode which

displays the world position of a pixel at the intersection point of the cross hair
and also allows me to take control of the camera and move it around using the
arrow keys.

This helped with getting the coordinates for placing objects in the world.

For drawing the level objects I created three separate lists Background,
Middleground and Foreground which I used to control the order that objects in
the world were drawn. This prevents things like background images from being
drawn over the player and other level objects.

I also created a list of platforms which I use to check for player collisions, and
since MovingPlatform.cs inherits from Platform.cs, this list also contains
moving platforms which are checked for a collision.

Crystals and Moving Platforms

For crystals and moving platforms I used the Vector2.Lerp() function to
calculate a new position for the object based on how much time had passed
and how much time the object should take to complete a trip to the end
position.

I also store this change in position and use this value inside the player class.
Adding this value to the player’s position allows me to move the player with

the platform when the player is standing on a platform.

Extra Information:

Assets

● Textures

The texture assets were purchased from GameDev Market online.

The creators profile can be viewed here:

https://www.gamedevmarket.net/member/maz/

I purchased the assets under the “Pro License”. More information on the
following here:

https://www.gamedevmarket.net/about/licences/

Assets Purchased:

-“Environment Pack”

-“Magical Creature”

● Music

The music track was downloaded from:

http://www.freesfx.co.uk/

Licensing terms can be found here:

http://www.freesfx.co.uk/info/eula/

Assets:

- “shock_wave.mp3”

Limitations/Improvements:

Collisions

Currently the collisions are checked directly against the players animation
texture. However this causes a collision to occur when Fennex’s tail is colliding

https://www.gamedevmarket.net/about/licences/
http://www.freesfx.co.uk/
http://www.freesfx.co.uk/info/eula/
https://www.gamedevmarket.net/member/maz/

with a platform which can cause him to hang onto a platform with his tail. It
also means that he isn’t able to fall down into gaps where spikes are the way
he should.

This can be fixed relatively simply by generating a second set of textures which
are the characters alpha maps, which contains a black texture that is compared
for the collisions where the tail is removed. Again, time was a factor here and I
didn’t quite manage to fit in this improvement.

Level Editor

I would also like to add a level editor so that I don’t need to manually position
objects in the level as it is not scaleable to continue to create levels manually
and looks poor quality when assets are procedurally placed (note the flowers
in the cave and the trees in the forest).

Camera

I also received feedback that people found the camera tracking a little odd and
would have preferred that the camera position itself so that Fennex was
always in the centre of the screen to give a better idea of the upcoming
obstacles and platforms.

Enemies

Unfortunately the artist I purchased the assets from did not have any enemy
sprites. It is my plan to contact him in the near future to see if he would be
interested in creating some enemy sprites for the game.

User Interface & HUD

Due to time constraints I only implemented a very basic user interface with a
start screen. This could be greatly improved with things like a controls screen
that explains the controls to use Fennex.

Code Design

Some of the game features like checkpoints, the player state and the drawing
of images could be improved.

The player state lookup does not scale very well when Fennex starts to have
more states and animations he could be in.

The drawing of images could also be redesigned once a level editor is
introduced, this would allow me to automatically set what layer the object
should be drawn at rather than trying to manually draw the game objects in
the correct order.

Levels, Life & Game Over

Currently Fennex has no life system which allows the player to try to complete
the level any number of times they like. Fennex will be reset to the last
checkpoint obtained if he dies. Given more time these things should be
implemented.

The level is completed when Fennex collects all of the crystals and run past the
end icon:

I would like to add a counter to the screen to show how many crystals out of
the total amount of crystals Fennex has collected, and add some way to make
the end of the level more clear, like a door or portal opening.

